Review of European trials of barium sulfate and metal oxide nets

Finn Larsen, National Institute of Aquatic Resources,
Technical University of Denmark

8

Dr. Simon Northridge, Sea Mammal Research Unit, University of St Andrews, UK

Review of European trials of barium sulfate and metal oxide nets BACKGROUND

- Many attempts at enhancing acoustic detectability of gillnets:
 - Many different materials, e.g. metal beads, air filled tubes, etc.
 - None fulfilled the two basic requirements:
 - Reduced bycatch
 - No negative effects on target catch
- 1999: acoustically reflective gillnets
 - Danish North Sea trial in 2000
 - UK North Sea trial in 2002-2003

Review of European trials of barium sulfate and metal oxide nets DANISH AND UK TRIALS

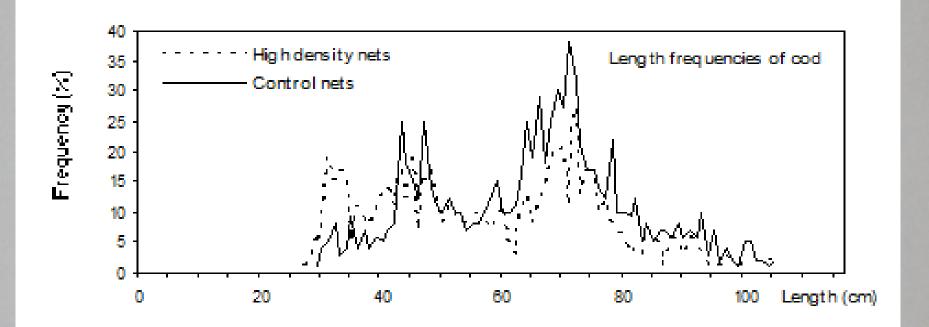
Danish trial in 2000

- One vessel in the Danish North Sea
- Cod/mixed species fishery
- September-October 2000
- Controlled experiment
- Iron oxide nets vs. nylon nets
- Full observer coverage
- Detailed catch data

UK trial in 2002-2003

- One vessel in the UK North Sea
- Skate fishery
- October 2002-September 2003
- Controlled experiment
- Barium sulphate nets vs. nylon nets
- Full observer coverage
- No catch data

Review of European trials of barium sulfate and metal oxide nets DANISH AND UK TRIALS


	DANIS	H TRIAL	UK TRIAL		
Net type	Nylon	Iron oxide	Nylon	BaSO4	
Twine size (mm)	0.59	0.58	0.60	0.67	
Twine colour	Green	Red-brown	Green	Blue	
Mesh size (mm)	156	156	267	241	
Hanging ratio	0.4	0.4	0.3	0.3	
Float interval (m)	2.46	2.16	-	-	

Review of European trials of barium sulfate and metal oxide nets RESULTS - Danish trial

NET TYPE	CATCH (numbers)		EFFORT (km*days)	CPUE (numbers/km*days)	
	Porpoises	Cod		Porpoises	Cod
Nylon	8	845	61	0.13	13.9
Iron oxide	0	685	68	0*	10.1*

* P < 0.05

Review of European trials of barium sulfate and metal oxide nets RESULTS - Danish trial

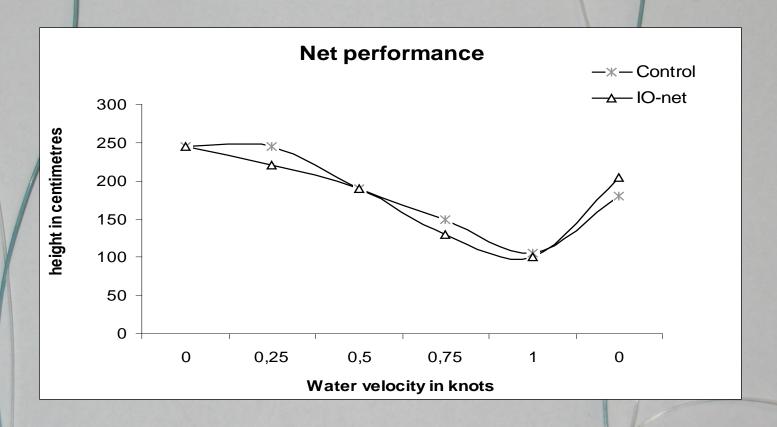
- Target species CPUE reduction = 29 %
- Worse by weight
- Even worse by value

Review of European trials of barium sulfate and metal oxide nets RESULTS - UK trial

NET TYPE	CATC (numbe		HOLES	EFFORT (hauls)		CPUE pers/hauls)
	Porpoises	Seals			Porpoise	es Seals
Nylon	3	5	105	173	0.017	0.029
BaSO4	8	10	76	171	0.047	0.058

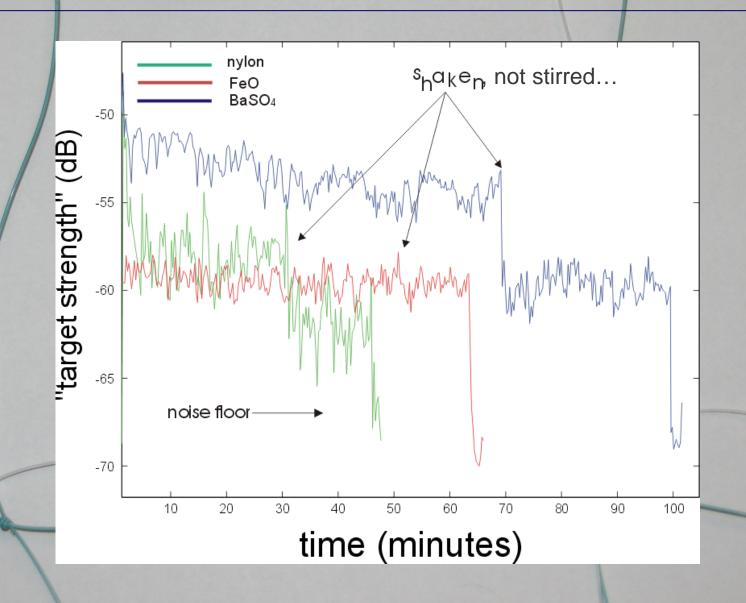
P < 0.1

P < 0.2


Nylon vs. BaSO4:

- Bycatch probably not related to acoustic properties of nets
- Smaller mesh size and larger twine size of BaSO4 nets favours retention of bycatch

Danish trials vs. UK trials:


Differences maybe related to mesh size (156 mm vs. 241-267 mm)

Review of European trials of barium sulfate and metal oxide nets NET BEHAVIOUR AND STIFFNESS

STIFFNESS	Nylon	Iron oxide	
E-module	784 MPa	2617 MPa	

Review of European trials of barium sulfate and metal oxide nets TARGET STRENGTH

Review of European trials of barium sulfate and metal oxide nets CONCLUSION

MECHANICAL PROPERTIES of the nets	DIFFERENT	CAUSE of differences in catch	
Hanging ratio	NO	NO	
Mesh size	NO	NO	
Twine size	NO	NO	
Target strength	NO	NO	
Specific gravity	YES	NO	
Colour	YES	NO	
Stiffness	YES	VES	

Review of European trials of barium sulfate and metal oxide nets BYCATCH HYPOTHESES

- 1. Porpoise cannot detect nylon gillnets at sufficient distance to avoid entanglement
- 2. Porpoises do not use their sonar all the time
- 3. Porpoises detect the nets but do not perceive them as an obstacle
- 4. Porpoises are distracted in the vicinity of the nets

Review of European trials of barium sulfate and metal oxide nets BYCATCH HYPOTHESIS 1

Porpoise cannot detect nylon gillnets at sufficient distance to avoid entanglement

- Hatakeyama & Soeda (1990)
 - estimated 2 m detection distance
- Kastelein et al. (2000)
 - estimated 3-6 m detection distance
- Mooney et al. (2004)
 - estimated 3-5 m detection distance
- Villadsgaard, Wahlberg & Tougaard (2007)
 - estimated harbour porpoise SL ≈ 205 dB
 - corresponds to 13-26 m detection distance

Detection Distance

is a function of:

Source Level

Ambient noise

Target Strength

Conclusion: Hypothesis 1 can be rejected

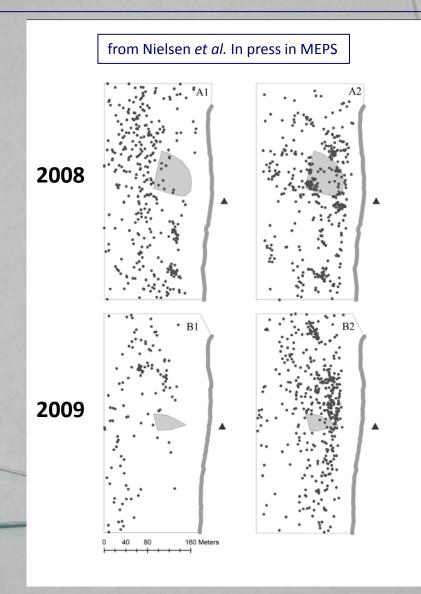
Review of European trials of barium sulfate and metal oxide nets BYCATCH HYPOTHESIS 2

Porpoises do not use their sonar all the time

- Verfuss et al. (2005)
 - in captivity
 - sonar used continuously
 - in daylight & good visibility
- Akamatsu et al. (2007)
 - in the wild
 - 90 % silent periods < 20 s
 - 4 % silent periods >50 s
 - scanning ahead c. 50 m
 - 148 dB threshold
- Conclusion: Hypothesis 2 can probably be rejected, but more studies of animals in the wild are needed

Review of European trials of barium sulfate and metal oxide nets BYCATCH HYPOTHESES 3 and 4

Porpoises do not perceive the nets as an obstacle and/or


Porpoises are distracted in the vicinity of the nets

- Kastelein et al. (1995)
- If true, will it help to increase TS and how much is needed?
 - TS of a 20 cm herring is -40 dB
 - TS of a 25 cm herring is -38 dB
 - This corresponds to a nylon twine diameter of 1.5 2 mm
 - Alternatively, with a twine diameter of 0.58 the net needs to be made of steel

Review of European trials of barium sulfate and metal oxide nets RESEARCH NEEDS

- We need to know why porpoises are caught in gillnets
 - Studies of fine-scale behaviour of porpoises around gillnets
 - Direct observations of bycatch
- We also need studies of :
 - Acoustic behaviour in the wild, e.g. using data loggers on animals
 - Detection experiments in noise

Review of European trials of barium sulfate and metal oxide nets Porpoise behaviour around gillnets

